

Solar Wind Plasma Interaction with Gerasimovich Lunar Magnetic Anomaly

<u>Shahab Fatemi</u>^{1,2}, Andrew R. Poppe^{1,2}, Gregory T. Delory^{1,2}, Charles Lue³, Mats Holmstrom³

- 1. Space Sciences Laboratory, UC Berkeley, CA, USA
- 2. SSERVI, NASA Ames Research Center, CA, USA
- 3. Swedish Institute of Space Physics, Kiruna, Sweden

Why is it interesting?

- The Moon has small-scale crustal magnetic fields
- Solar wind plasma interaction with lunar crustal fields
- Correlation between crustal magnetic fields and lunar swirls

Why is it interesting?

- The Moon has small-scale crustal magnetic fields
- Solar wind plasma interaction with lunar crustal fields
- Correlation between crustal magnetic fields and lunar swirls

Global image of interaction

[Saito et al., 2012]

- Magnetized electrons reflect at high altitudes
- Heavy ions penetrate deeper
- Ambipolar electric field

Global image of interaction

[Saito et al., 2012]

- Magnetized electrons reflect at high altitudes
- Heavy ions penetrate deeper
- Ambipolar electric field

Chandrayaan-1 estimation of electrostatic potential through ENA observation.

Modeling plasma interaction with anomalies

- Previous theoretical and numerical works:
 - * MHD, Particle-in-cell (PIC), and Hybrid
- Here we use:
 - * Three-dimensional self-consistent hybrid model of plasma (ions are kinetic particles, electrons are a massless fluid) [Holmstrom, 2010, 2013].
 - * include an empirical model of lunar crustal magnetization Developed by Purucker and Nicholas, 2010.

Modeling plasma interaction with anomalies

- Previous theoretical and numerical works:
 - * MHD, Particle-in-cell (PIC), and Hybrid
- Here we use:
 - * Three-dimensional self-consistent hybrid model of plasma (ions are kinetic particles, electrons are a massless fluid) [Holmstrom, 2010, 2013].
 - * include an empirical model of lunar crustal magnetization Developed by Purucker and Nicholas, 2010.

Coordinate system & parameters

- Solar wind flows along the surface normal vector (x-axis)
- Solar wind speed is 310 km/s
- Interplanetary magnetic field (IMF) magnitude is 4 nT.
- Proton temperature is \sim 4 eV, and electron temperature is \sim 10 eV.

Run	n _i [cm ⁻³]	P _{dyn} [nPa]
Low	3.5	0.6
Medium	7.0	1.2
High	14.0	2.4

Model results (medium P_{dyn})

- Crustal fields are compressed and disturbed by the solar wind
- Downgoing protons are decelerated and deflected around crustal fields.
- Surface is locally shielded
- Protons are reflected over the crustal field
- Average reflection flux is~10% of the incident flux

[Fatemi et al., 2015]

Effects of plasma dynamic pressure

[Fatemi et al., 2015]

- Crustal fields are compressed by the solar wind.
- Magnetic fields get stronger close to the surface when the dynamic pressure increases.

- Solar wind ions start to decelerate at higher altitudes during low dynamic pressures.
- Electric field closer to the surface (<10 km) is stronger for high dynamic pressures.

- On average, a potential of nearly+300 V forms at the surface under the Gerasimovich crustal fields, which is consistent with observations.

Different components of electric field

Electric field in our hybrid model

$$\mathbf{E} = \frac{1}{\rho_i} \left(-\mathbf{J}_i \times \mathbf{B} + \mu_0^{-1} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} - \nabla p_e \right)$$

Different components of electric field

Electric field in our hybrid model

Different components of electric field

Electric field in our hybrid model

$$\mathbf{E} = \frac{1}{\rho_i} \left(-\mathbf{J}_i \times \mathbf{B} + \mu_0^{-1} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} - \nabla p_e \right)$$
Convective Hall term Ambipolar

- Previous works suggested that the Hall term is the dominant electric field over the lunar crustal field (e.g. Saito et al., 2012; Jarvinen et al., 2014).

- Ambipolar electric field has a noticeable contribution at close distances to the Moon.

Summary!

- The first local hybrid simulations for the solar wind interaction with realistic lunar crustal field.
- The incident solar wind flux to the lunar surface is considerably reduced over the crustal fields.
- The effects of low and high solar wind dynamic pressures.
- Low $P_{dyn} =>$ deflects plasma High $P_{dyn} =>$ reflects plasma
- Anti-moonward Hall electric field is the dominant electric field, but the ambipolar electric field has a noticeable contribution to the electric field at close distances (<3 km) to the Moon.

AN AGU JOURNA

JGR

(a). Electrostatic potential 20N 150 100 20S 50 -50 -100 40S -150-200 105W 135W 120W 90 W

[Futaana et al., 2013]

Medium

Low

High

